Theory of Computation
Problem Set 10

Universidad Politecnica de San Luis Potosi
Please start solving these problems immediately, don’t procrastinate, and work in study groups.
Please do not simply copy answers that you do not fully understand; e
Advice: Please try to solve the easier problems first (where the meta-problem here is to figure out which
are the easier ones ©). Don’t spend too long on any single problem without also attempting (in

parallel) to solve other problems as well. This way, solutions to the easier problems (at least easier for you)
will reveal themselves much sooner (think about this as a “hedging strategy” or “dovetailing strategy”).

BRUTE-FORCE DYNAMIC '
SOLUTI1ON: PROGRAMMING SELUNG ON ERAY:
0 (n! ALGORITHMS: O(1)
STILL WORKING
ON YOUR ROUTE?
e
~
SHUT THE
HEW VP

The following problems are from [Sipser, Second Edition]:

Pages 211-214:5.2,5.4, 5.6, 5.7,5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.20, 5.26,
5.27,5.28,5.29, 5.30, 5.31, 5.33, 5.35

Pages 242-243: 6.1, 6.2, 6.4, 6.6, 6.14, 6.15, 6.16, 6.17, 6.18, 6.20, 6.21, 6.22, 6.23, 6.24

Page 294-300: 7.6, 7.7,7.9, 7.10, 7.11, 7.13, 7.14, 7.17, 7.21, 7.26, 7.32, 7.33, 7.36, 7.38,
71.41,7.42,7.44

Pages 329-332: 8.4, 8.6, 8.8, 8.9, 8.11, 8.17, 8.18, 8.20, 8.21, 8.22, 8.23, 8.24, 8.25

Pages 361-363: 9.8, 9.12,9.13,9.14

Prove whether given a TM M and string w, each of the following properties is decidable,
Turing-recognizable, or not Turing-recognizable:

a) an arbitrary given string w causes M to enter state 3.

b) there exists some string that causes M to enter state 3.

c) an arbitrary given string w causes M to enter each and every one of its states.
d) a given string w causes M to move its head to the left at least once when M runs on w.
e) M accepts a finite language.

f) M accepts a regular language.

g) M accepts a decidable language.

h) M accepts a Turing-recognizable language.

i) M never writes a nonblank symbol on its tape when it runs on a given string w.
J) M never overwrites a nonblank symbol when it runs on a given string w.

k) M never overwrites a nonblank symbol when it runs on any string.

I) M is a universal Turing machine.

Are there two non-context-free languages whose concatenation is regular? Are there a
countably infinite number of such examples? Are there an uncountable number of such
examples?

Are there two undecidable languages whose concatenation is regular? Are there a countably
infinite number of such examples? Are there an uncountable number of such examples?

S. Are there two non-recognizable languages whose concatenation is regular? Are there a countably
infinite number of such examples? Are there an uncountable number of such examples?

6. We define the SHUFFLE of two strings v,w € >*as:

SHUFFLE(vV,W) = {V W V,W,..V, W} | V=V | V,...V}, W=W,W,...W],
and for some k > 1, v;,w; € YF1<i< k}
For example, 212ablbaa2b22 € SHUFFLE(abbaab,2121222)

Extend the definition of SHUFFLE to two languages L,,L, < >* as follows:
SHUFFLE(L,L,) = {w|w, €L,, w,eL,, weSHUFFLE(w ,w,) }

a) Is the SHUFFLE of two decidable languages necessarily decidable?
b) Is the SHUFFLE of two recognizable languages necessarily recognizable?

7. Given an arbitrary alphabet 2. ={a;,a,,...,a,}, we can impose a total ordering on it in the sense
that we can define < so that a; <a, < ... <a,,. We now proceed to define a new operation called

the SORT of astringw = wyw,..w, € > (where w; € 2 and K = |w]) as:

SORT(w) = Wa1)Wo(2) W (k) SO that Wiy < Wo(i+1) forl1<i<k-1
and o is a permutation (i.e., a 1-to-1 onto
mapping o:[1..K]>[1..k])

For example, SORT(11210010120)=00001111122. Now extend the definition of SORT to
languages, so that SORT(L) = {SORT(w) | weL}. For each one of the following statements,
state whether it is true or false and explain:

a) SORT(Z™) is regular.
b) SORT(L) c L

¢) SORT(SORT(L))=SORT (L)
d) SHUFFLE(L,,L,)=SHUFFLE(L,,L,)

e) SORT(SHUFFLE(L4,L,)) = SORT(L,L,)
f) 3 L such that SORT(L)=SHUFFLE(L,L)=L
g) SORT preserves regularity.
h) SORT preserves context-freeness.
1) SORT preserves decidability
J) SORT preserves non-decidability
k) SORT preserves recognizability
1) SORT preserves non-finite-describability
(The definition of SHUFFLE operator is the same as above.)

8. Is NP countable?

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.
22.
23.

24,

Is P » NP countably infinite?
Is PSPACE countable?

Is it decidable whether given a one-state PDA accepts all input strings? How about a
three-state PDA?

Define the “Busy Beaver” function BB:N—N as follows: BB(n) is the maximum number of 1’s
printed on the tape of any Turing machine with n states which halts when running on the blank
tape (i.e., with no input). Is BB finitely describable? Is BB computable? How fast does BB
grow asymptotically?

If we had free access to an oracle that computes the Busy Beaver function for us in constant
time, prove either that all functions (mapping naturals to naturals) are computable relative to
such an oracle, or else give a counter-example. (Please don’t do both. ©)

Two cyborgs walk into your home, both claiming to be oracles for the graph 3-colorability
decision problem. They both always give a yes/no answer in constant time for any instance, and
are each self-consistent (i.e. each always gives the same answer for the same instance). However,
one is a true oracle and the other is a shameless impostor, and you have a large instance of 3-
colorability upon which they disagree. Prove whether it is possible to expose the impostor within
time polynomial in the size of that instance.

Two space aliens walk into your home, both claiming to be oracles for the Boolean Satisfiability
(SAT) decision problem. They both always give a yes/no answer in constant time for any SAT
instance, and are each self-consistent (i.e. each always gives the same answer for the same SAT
instance). However, one is a true oracle and the other is a shameless impostor, and you have a
large instance of SAT upon which they disagree. Prove whether it is possible or not to expose the
impostor within time polynomial in the size of that SAT instance.

True or false: If a rooted binary tree has infinitely many nodes, then it has an infinitely
long path from the root.

True or false: Most Boolean functions on N inputs have an exponentially long (as a
function of N) minimal description (in any fixed reasonable encoding / formalism).

True or false: Most Boolean functions on N inputs require an exponential (as a function
of N) number of 2-input Boolean gates to implement.

True or false: most strings are (losslessly) compressible.
Is the set of incompressible strings decidable?

Is the set of incompressible strings recognizable?

Is NP closed under the Kleene-star operator?

Is P closed under the Kleene-star operator?

Is integer multiplication is NP-complete? (hint: this is subtle).

